3.247 \(\int \frac{x^{7/2} (A+B x^2)}{\sqrt{b x^2+c x^4}} \, dx\)

Optimal. Leaf size=330 \[ \frac{b^{5/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (7 b B-9 A c) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right ),\frac{1}{2}\right )}{15 c^{11/4} \sqrt{b x^2+c x^4}}-\frac{2 b^{5/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (7 b B-9 A c) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{15 c^{11/4} \sqrt{b x^2+c x^4}}+\frac{2 b x^{3/2} \left (b+c x^2\right ) (7 b B-9 A c)}{15 c^{5/2} \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{b x^2+c x^4}}-\frac{2 \sqrt{x} \sqrt{b x^2+c x^4} (7 b B-9 A c)}{45 c^2}+\frac{2 B x^{5/2} \sqrt{b x^2+c x^4}}{9 c} \]

[Out]

(2*b*(7*b*B - 9*A*c)*x^(3/2)*(b + c*x^2))/(15*c^(5/2)*(Sqrt[b] + Sqrt[c]*x)*Sqrt[b*x^2 + c*x^4]) - (2*(7*b*B -
 9*A*c)*Sqrt[x]*Sqrt[b*x^2 + c*x^4])/(45*c^2) + (2*B*x^(5/2)*Sqrt[b*x^2 + c*x^4])/(9*c) - (2*b^(5/4)*(7*b*B -
9*A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/
b^(1/4)], 1/2])/(15*c^(11/4)*Sqrt[b*x^2 + c*x^4]) + (b^(5/4)*(7*b*B - 9*A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b +
 c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(15*c^(11/4)*Sqrt[b*x^2
+ c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.376646, antiderivative size = 330, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {2039, 2024, 2032, 329, 305, 220, 1196} \[ \frac{b^{5/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (7 b B-9 A c) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{15 c^{11/4} \sqrt{b x^2+c x^4}}-\frac{2 b^{5/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (7 b B-9 A c) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{15 c^{11/4} \sqrt{b x^2+c x^4}}+\frac{2 b x^{3/2} \left (b+c x^2\right ) (7 b B-9 A c)}{15 c^{5/2} \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{b x^2+c x^4}}-\frac{2 \sqrt{x} \sqrt{b x^2+c x^4} (7 b B-9 A c)}{45 c^2}+\frac{2 B x^{5/2} \sqrt{b x^2+c x^4}}{9 c} \]

Antiderivative was successfully verified.

[In]

Int[(x^(7/2)*(A + B*x^2))/Sqrt[b*x^2 + c*x^4],x]

[Out]

(2*b*(7*b*B - 9*A*c)*x^(3/2)*(b + c*x^2))/(15*c^(5/2)*(Sqrt[b] + Sqrt[c]*x)*Sqrt[b*x^2 + c*x^4]) - (2*(7*b*B -
 9*A*c)*Sqrt[x]*Sqrt[b*x^2 + c*x^4])/(45*c^2) + (2*B*x^(5/2)*Sqrt[b*x^2 + c*x^4])/(9*c) - (2*b^(5/4)*(7*b*B -
9*A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/
b^(1/4)], 1/2])/(15*c^(11/4)*Sqrt[b*x^2 + c*x^4]) + (b^(5/4)*(7*b*B - 9*A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b +
 c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(15*c^(11/4)*Sqrt[b*x^2
+ c*x^4])

Rule 2039

Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Sim
p[(d*e^(j - 1)*(e*x)^(m - j + 1)*(a*x^j + b*x^(j + n))^(p + 1))/(b*(m + n + p*(j + n) + 1)), x] - Dist[(a*d*(m
 + j*p + 1) - b*c*(m + n + p*(j + n) + 1))/(b*(m + n + p*(j + n) + 1)), Int[(e*x)^m*(a*x^j + b*x^(j + n))^p, x
], x] /; FreeQ[{a, b, c, d, e, j, m, n, p}, x] && EqQ[jn, j + n] &&  !IntegerQ[p] && NeQ[b*c - a*d, 0] && NeQ[
m + n + p*(j + n) + 1, 0] && (GtQ[e, 0] || IntegerQ[j])

Rule 2024

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n +
 1)*(a*x^j + b*x^n)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^(n - j)*(m + j*p - n + j + 1))/(b*(m + n*p + 1)
), Int[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j
, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[m + j*p + 1 - n + j, 0] && NeQ[m + n*p + 1, 0]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{x^{7/2} \left (A+B x^2\right )}{\sqrt{b x^2+c x^4}} \, dx &=\frac{2 B x^{5/2} \sqrt{b x^2+c x^4}}{9 c}-\frac{\left (2 \left (\frac{7 b B}{2}-\frac{9 A c}{2}\right )\right ) \int \frac{x^{7/2}}{\sqrt{b x^2+c x^4}} \, dx}{9 c}\\ &=-\frac{2 (7 b B-9 A c) \sqrt{x} \sqrt{b x^2+c x^4}}{45 c^2}+\frac{2 B x^{5/2} \sqrt{b x^2+c x^4}}{9 c}+\frac{(b (7 b B-9 A c)) \int \frac{x^{3/2}}{\sqrt{b x^2+c x^4}} \, dx}{15 c^2}\\ &=-\frac{2 (7 b B-9 A c) \sqrt{x} \sqrt{b x^2+c x^4}}{45 c^2}+\frac{2 B x^{5/2} \sqrt{b x^2+c x^4}}{9 c}+\frac{\left (b (7 b B-9 A c) x \sqrt{b+c x^2}\right ) \int \frac{\sqrt{x}}{\sqrt{b+c x^2}} \, dx}{15 c^2 \sqrt{b x^2+c x^4}}\\ &=-\frac{2 (7 b B-9 A c) \sqrt{x} \sqrt{b x^2+c x^4}}{45 c^2}+\frac{2 B x^{5/2} \sqrt{b x^2+c x^4}}{9 c}+\frac{\left (2 b (7 b B-9 A c) x \sqrt{b+c x^2}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{b+c x^4}} \, dx,x,\sqrt{x}\right )}{15 c^2 \sqrt{b x^2+c x^4}}\\ &=-\frac{2 (7 b B-9 A c) \sqrt{x} \sqrt{b x^2+c x^4}}{45 c^2}+\frac{2 B x^{5/2} \sqrt{b x^2+c x^4}}{9 c}+\frac{\left (2 b^{3/2} (7 b B-9 A c) x \sqrt{b+c x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b+c x^4}} \, dx,x,\sqrt{x}\right )}{15 c^{5/2} \sqrt{b x^2+c x^4}}-\frac{\left (2 b^{3/2} (7 b B-9 A c) x \sqrt{b+c x^2}\right ) \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{c} x^2}{\sqrt{b}}}{\sqrt{b+c x^4}} \, dx,x,\sqrt{x}\right )}{15 c^{5/2} \sqrt{b x^2+c x^4}}\\ &=\frac{2 b (7 b B-9 A c) x^{3/2} \left (b+c x^2\right )}{15 c^{5/2} \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{b x^2+c x^4}}-\frac{2 (7 b B-9 A c) \sqrt{x} \sqrt{b x^2+c x^4}}{45 c^2}+\frac{2 B x^{5/2} \sqrt{b x^2+c x^4}}{9 c}-\frac{2 b^{5/4} (7 b B-9 A c) x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{15 c^{11/4} \sqrt{b x^2+c x^4}}+\frac{b^{5/4} (7 b B-9 A c) x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{15 c^{11/4} \sqrt{b x^2+c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.117432, size = 97, normalized size = 0.29 \[ \frac{2 x^{5/2} \left (b \sqrt{\frac{c x^2}{b}+1} (7 b B-9 A c) \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};-\frac{c x^2}{b}\right )-\left (b+c x^2\right ) \left (-9 A c+7 b B-5 B c x^2\right )\right )}{45 c^2 \sqrt{x^2 \left (b+c x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^(7/2)*(A + B*x^2))/Sqrt[b*x^2 + c*x^4],x]

[Out]

(2*x^(5/2)*(-((b + c*x^2)*(7*b*B - 9*A*c - 5*B*c*x^2)) + b*(7*b*B - 9*A*c)*Sqrt[1 + (c*x^2)/b]*Hypergeometric2
F1[1/2, 3/4, 7/4, -((c*x^2)/b)]))/(45*c^2*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

Maple [A]  time = 0.017, size = 413, normalized size = 1.3 \begin{align*} -{\frac{1}{45\,{c}^{3}}\sqrt{x} \left ( -10\,B{c}^{3}{x}^{6}+54\,A\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ){b}^{2}c-27\,A\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ){b}^{2}c-42\,B\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ){b}^{3}+21\,B\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ){b}^{3}-18\,A{x}^{4}{c}^{3}+4\,B{x}^{4}b{c}^{2}-18\,A{x}^{2}b{c}^{2}+14\,B{x}^{2}{b}^{2}c \right ){\frac{1}{\sqrt{c{x}^{4}+b{x}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)*(B*x^2+A)/(c*x^4+b*x^2)^(1/2),x)

[Out]

-1/45/(c*x^4+b*x^2)^(1/2)*x^(1/2)/c^3*(-10*B*c^3*x^6+54*A*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c
*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/
2),1/2*2^(1/2))*b^2*c-27*A*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^
(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*b^2*c-42*B*((c*
x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)
*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*b^3+21*B*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/
2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-
b*c)^(1/2))^(1/2),1/2*2^(1/2))*b^3-18*A*x^4*c^3+4*B*x^4*b*c^2-18*A*x^2*b*c^2+14*B*x^2*b^2*c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )} x^{\frac{7}{2}}}{\sqrt{c x^{4} + b x^{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)*(B*x^2+A)/(c*x^4+b*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*x^(7/2)/sqrt(c*x^4 + b*x^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + b x^{2}}{\left (B x^{3} + A x\right )} \sqrt{x}}{c x^{2} + b}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)*(B*x^2+A)/(c*x^4+b*x^2)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2)*(B*x^3 + A*x)*sqrt(x)/(c*x^2 + b), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(7/2)*(B*x**2+A)/(c*x**4+b*x**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )} x^{\frac{7}{2}}}{\sqrt{c x^{4} + b x^{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)*(B*x^2+A)/(c*x^4+b*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*x^(7/2)/sqrt(c*x^4 + b*x^2), x)